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INFLUENCE OF STRONG SELF ELECTRIC FIELDS ON THE ION RESONANCE INSTABILITY

IN A NONNEUTRAL PLASMA COLUMN
Ronald C. Davidson®
Division of Magnetic Fusion Energy
Energy Research and Development Administration
Washington, D. C. 20545
Hwan-sup Uhm

Department of Physics and Astronomy
University of Maryland, College Park, Md. 20742

The influence of strong self-electric fields on the ion resonance
instability is examined for a cylindrical nonneutral plasma column
immersed in a uniform axial magnetic field Boéz' The analysis is
carried out within the framework of a macroscopic cold-fluid model,
and electrostatic stability properties are investigated for the case
of rectangular electron and ion density profiles. The parameter
6'(2m§e/wze)(1-f) is introduced as a convenient measure of the relative
strengths of the equilibrium self-electric force and the magnetic force
on an electron fluid element. (Here, &pe is the electron plasma
frequency, W.e is the electron cyclotron frequency, f-nglng is the
fractional charge neutralization, and §=1 corresponds to the maximum
allowed charge density for radial confinement of the equilibrium
configuration.) An important conclusion of this study is that the
equilibrium self-electric field can have a large influence on stability
behavior. In particular, stability properties for 651 differ
substantially from those obtained when §<<1. Moreover, for a
nonneutral plasma column with significant charge neutralization,
it is found that the fundamental mode (%=1) is not the most unstable
mode. Rather, higher harmonic perturbations have larger growth rates.
However, in the limiting case where f<<1 and §<<1, the %=1 mode can

have the largest growth rate, which is consistent with the result

previously obtained by Levy et al.

B
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1. INTRODUCTION

There have been several recent experimental and theoretical

studies of the fundamental equilibrium and stability properties of

nonneutral plasmas1 in both m:l.rr:orz-5 and uniform6-10 magnetic field
‘ ‘ configurations. Perhaps one of the most basic instabilities that

characterizes a nonneutral plasma with both electron and ion

components is the ion resonance instability.11_13 In cylindrical

geometry (Fig. 1), the ion resonance instability can be described

e
as a two-rotating-stream instabilityl1 in which the relative rotation

between electrons and ions is produced by the equilibrium self-

iky12 of this instability

electric field Eg(r)gr. Previous analyses
have been restricted to low beam densities and small values of

fractional charge neutralization, i.e.,

~2
2w
-—21’3 (1-f) << 1

w
es f<<1.

Here, o > is the electron plasma frequency, Yoo is the electron cyclotron
frequency, and f-ng/ng is the fractional charge neutralization
provided by the positive ion background. 1In this paper, we investigate

the influence of strong self-electric fields on the ion resonance

instability in a nonneutral plasma column with rectangular electron
and ion density profiles (Fig. 2). The analysis is carried out within
the framework of a macroscopic model, treating the electrons and ions

3

as cold (T,+0) fluids immersed in a uniform axial magnetic field BO%z' K !
Moreover, the stability studies assume electrostatic perturbations :

with infinitely long axial wavelength (3/32z=0).

It is useful to introduce the dimensionless parameter




which is a measure of the characteristic relative strength of the
equilibrium self-electric force and the magnetic force on an
electron fluid element. In the present equilibrium and stability
analysis, the parameter § and the fractional charge neutralization

f are allowed to span the range of values

Q<3$é

1A
=
-

and

0< £

IA
=
A d

where 8=1 corresponds to the maximum allowed charge density for radial
confinement of the equilibrium configuration. One of the most important
conclusions of this study is that the equilibrium self-electric field
can have a large influence on stability behavior. In particular,
stability properties for 81 differ substantially from those obtained
when 6<<1 (see, for example, Fig. 5). Moreover, for a nonneutral

plasma column with significant charge neutralization, it is found

that the fundamental mode (2=1) is not the most unstable mode.

Rather, higher harmonic perturbations have larger growth rates (see,

for example, Figs. 8 and 9). However, in the special limiting case

where f<<1 and §<<1, the 2=1 mode can have the largest growth rate,

12

which is consistent with the result previously obtained by Levy et al.
[Fig. 8].

The outline of this paper is the following. In Section 2, we
give a brief description of the theoretical model (Section 2.A) and
summarize the equilibrium properties for general density profiles

0

n,(r), j=e,i (Section 2.B). The corresponding eigenvalue equation

b

vl s
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that describes thé éleétrostatic stability properties of the nonneutral
plasma column is derived in Section 3.A [Eq. (13)]. In Sections 3.B
and 3.C, the eigenvalue equation is solved for the case where the
electron and ion density profiles are rectangular [Eqs. (20)-(22)].
This leads to a foﬁrth-order algebraic dispersion relation that
determines the complex eigenfrequency w [Eq. (26)]. A detailed
numerical analysis of the dispersion relation is presented in Sectiom 4,
where stability properties are investigated for a broad range of
plasma parameters o /w2 , £, etc.
pe ce

Finally, we emphasize that the presenﬁ anglysis is based on a
macroscopic cold-fluid model in which the ion (and electron) motion
is assumed to be laﬁinar. Although this 1is “a reasonable approximation
when rLi<<Rﬂ (where r, is the characteristic thermal ion Larmor
radius, and R_ is the radius of the plasma column), we expect signif-
icant modifica?ions to the stability behavior when rLixRp' The
influence of finite ion Larmor radius effects on the ion resonance
1nstability is currently under investigation14 within the framework
of a hybrid Vlasov-fluid model, which treats the electrons as a

macroscopic, cold fluid and the ions in a fully kinetic (Vlasov)

manner.




2. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

| 2.A Theoretical Model

i As 1llustrated in Fig. 1, the equilibrium configuration consists
of a cylindrically symmetric nonneutral plasma column that is infinite
| in axial extent and aligned parallel to a uniform applied magnetic field
Boéz' The mean motion of the plasma componenés is in the azimuthal
‘ : direction, and the applied magnetic field provides radial confinement

of the plasma column. As shown in Fig. 1, the characteristic radius

of the plasma column is denoted by Rp’ and we introduce a cylindrical
polar coordinate system (r,08,z) with the z axis coinciding with the axis
of symmetry; r is the radial distance from the z axis, and 6 is the polar
angle in a plane perpendicular to the z axis. The deviation from equil-

ibrium charge neutrality [ng(r)#ng(r)] produces an equilibrium

radial electric field Eo(g)-Eg(r)%r that influences the azimuthal motion
of the plasma components.

The following are the main assumptions pertaining to the equilibrium
and stability analysis:

(a) Equilibrium properties are independent of z (3/32=0) and
azimuthally symmetric (9/36=0) about the z axis. For example,
the mean equilibrium velocity of component j (j=e,i) can be expressed
as Xg(k)-vge(r)éé, where %G;is a unit vector in the 6 direction, and
avge/ae-o-avge/az.

(b) For present purposes, the electrons and ions are treated as
cold (TJ+O) fluids immersed in the uniform axial magnetic field BOéz’
Within the context of the electrostatic approximation (EZBOéz and

XXE=0), the equation of motion and continuity equation for each plasma

component (j=e,i) can be expressed as




- xB“
(a—"'XJ'V)Xj'T:i'(*M), (1)

ot c

-g—t-:-nj+v'(njxj)'0, (2)

where E(ﬁ,t)--v¢(§,t) is the electric field, nj(ﬁ,t) is the density,

and m, are the charge and mass,

] ]
respectively, of a particle of species j. In Eq. (1), the spatial

Xj(k‘t) is the mean velocity, and e

variation in B, is neglected (low-beta approximation), and the

0
electrostatic potential ¢(§,t) is determined self-consistently from

Poisson's equation
v%4 = 4re(n_-n,) (3)
e i

where -e is the electron charge.

(c) In the stability analysis, flute perturbations with 3/3z=0
are considered. All quantities are expressed as an axisymmetric
equilibrium value plus a perturbation, i.e., w(g,t)-wo(r)+6¢(¥,t).
Assuming perturbations with azimuthal harmonic number £, the quantity

Gw(ﬁ,t) is then expressed as
SV (x,t) = 80, (r)exp[i(20-wt)] , (4)
where @ is the complex eigenfrequency.

2.B General Equilibrium Properties

An equilibrium analysis of Eqs. (1)-(3) for general steady-state

0 0
j(r)s vje

manner. First, it is straightforward to show from Eq. (2) that the

(3/3t=0) profiles, n (r) and ¢0(r), proceeds in the following

functional form of the density profile ng(r) can be specified

arbitrarily. Moreover, from Eq. (1), equilibrium force balance in the
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radial direction can be expressed as j je(r)/r ejE (r)+ej je(r)B /c,

or equivalently

mj+ejw jwj waij-O ' (5)

where ej-sgnej, 0, -|e 0/mjc is the cyclotron frequency, wj(r)-

e(r)/r is the angular velocity of a fluid element, and wg (r) is

j
the angular E XEO frequency defined by
c 0 c 9 0
2T " E TB, or B (6)

Finally, the equilibrium electrostatic potential ¢O(r) is determined

self-consistently from the steady-state Poisson equation
13 93 0 0 0
et ¢ —4ne(ne-ni) s (7)

where ng(r) and ng(r) are the equilibrium electron and ion density

profiles. We note from Eq. (5) that there are two allowed equilibrium

values of wj. Solving Eq. (5) for wj gives
€, w 1/2
w, = wi = - -J—Ei[l £ (1 + 4e -—E—) ) s (8)
] | -2 j e

where the upper sign (w,= ) corresponds to a "'fast' rotational

19

equilibrium, and the lower sign (m w,) corresponds to a "slow"

g
rotational equilibrium. Evidently, in the limit of equilibrium

charge neutrality with wE=0, it follows from Eq. (5) that w;=—ejwcj

and w,=0.

3
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3. ELECTROSTATIC STABILITY PROPERTIES

3.A General Eigenvalue Equation

To investigate electrostatic stability behavior, we make use
of Eq. (4) and linearize Eqs. (1)-(3) about the axisymmetric equilibrium

(r), Xg(;g)wj(r)rée, and go(%l)»(acpo/ar)ér.

state characterized by n0

3
This readily gives
a Con ‘
-i(w—lmj)GVj -(sjw j+2wj)6Vje - mj 3;'G¢ > 9)
: 13, 2 yeee o ) 188§
-i(w—le)GVje+[ejwcj + 2 (r m )16V §r mj = s (10)
Ol
ifn, 8V
-i(w-zwj)an +~—-—— (rn 6V ) +-——~L—4L- (11)
129 9 o 22 A A
P g & -41rZejan ; (12)
r ]

where the index £ has been suppressed on the perturbation amplitudes

Ger(r), 8é(r), etc. It is evident from Eqs. (9)-(11) that the

perturbations in density and mean fluid velocities can be expressed directly

in terms of &§¢(r). After some straightforward algebra, Eq. (12)

becomes 2
13 o) 2 43
r or [r(l Z 2 ) or ¢]
£) s
22 wz
-5 (-1 e as.
r jv
k| e
._M 1 cer e 200
- z - ar {—21 (ejw +2wj)]
h| h| Vj

where m:j(r)-bnng(r)eilmj, and vi(r) is defined by

)2 (e, +2wj)[ +1 wj)) (1

2
vj(r)-(m-lw 3%

3 €3y *

The eigenvalue equation (13) can be used to calculate the eigenfunction




R

e R At

Ga(r) and complex eigenfrequency w for a broad class of equilibrium

profiles ng(r) and mj(r) consistent with Eqs. (5)-(8).

3.B Eigenvalue Equation for Sharp-Boundary Equilibrium

For present purposes, we specialize to the case where the electron

and ion density profiles are rectangular [Fig. 2], i.e.,

n0=const., O<r<R_ ,
0 P
ne(r) = { (15)
0 > Rp<r<Rc >
anid fn0=const., 0<r<Rp 5
ng(r) = { (16)
0 s R <r<Rc >

where f=const.=fractional charge neutralization, and r=Rc is the radial
location of a grounded conducting wall. From Eqs. (7), (15) and
(16), we find ¢0(r)=1ren0(l—f)r2 inside the plasma column (0<r<1Rp)-

Making use of Eq. (6), the equilibrium ongo frequency can be expressed

as
2men,.c
0

wg = ——EE—— (1-f) = const. (17)

Substituting Eq. (17) into Eq. (8) gives

~2 1/2
e P Zpe 1-£ 18)
& e X 5 R Ut A (
w
ce
and 2 1/2
AR R 5 AW mi—Z-Q—)P-E(l £) 19)
w, = w, = - = + 1+-;m2 - j (
ce

where 6§e=4Wnoe2/me. It is evident from Eqs. (18) and (19) that the

angular velocity profiles wg and w, are uniform (independent of r)

i
for the electron and ion density profiles illustrated in Fig. 2.

|
L
i 3
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1 For the rectangular density profiles prescribed by Egqs. (15)

and (16), the eigenvalue equation (13) can be expressed as

| wz 9 / w2

. 13 3 @ et ol B s

‘ r K (1 —gl> ot 8¢ 2 (1 ) :%i
i

Lol e |

! A v r j
] (20)
| &ﬁi &zj €0, +2w ,
' -y B e dser)
4 jwv J
j
where
Vit ) (e o 420,) P=const. (21)
‘ and &2 =const., O<r<R_ ,
2 PJ p o
w =
pi P (22)
| 0 » R <r<R_ .
P &

2 2 “2 2
In Eqs. (20) and (22), mpe—annoe /me and wpi—Anane /mi, and use has

been made of 9w

2 .2
or= .6(r-R ).
A

3.C Dispersion Relation for Sharp-Boundary Equilibrium

Except at the point'r=Rp, it is clear from Egqs. (20)-(22) that
8¢ (r) satisfies the vacuum Poisson equation r_l(a/ar)[r36$/3r]-(22/r2)6$=0.

- Therefore, the solution to Eq. (20) can be expressed as

5&1(r)=A(r/Rp)" , Ox<R_ (23)

inside the plasma column, and

2% 4. 2%
£ ¥ (1-Rc /)

84o(r) = A (E;) :

m ’ R <r<_RC ) (24)
c P

in the vacuum region between the surface of the plasma column and the

conducting wall. Note that the perturbed potential is continuous

at the surface of the plasma column with 6$i(r=Rp)=6$o(r=Rp)=A.

Moreover, the perturbed potential vanishes at the conducting wall,




C
i

PR
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i.e., 6¢°(r=Rc)-0.
The dispersion relation that determines the complex eigentrequency
w is obtained by multiplying Eq. (20) by r and integrating from

Rp(l—s) to Rp(l+e), with e+0+. This gives

~2
e “pi\ (o <2
R [-—— 8¢ ) -R [1-7 ) f—- Y )
BLAE 38 r=R P ( 3l v? A r=R
P 3 P

i (25)
w e.w .Fw,
- £6$(r=R ) Y__Ri_j_(}l__l i
P 5\)2 w—Iij
J

Substituting Eqs. (23) and (24) into Eq. (25) and rearranging terms,

we obtain
A2
il pj
0= ) . (26)
1_(RP/RC)22 3 2(m—2wj)[(w—le)+(€jwcj+2wj)]

Throughout the remainder of this article, we assume that the electron

and ion equilibria are rotating in the "slow" rotational mode with

w=ug and  w;=w, - (27)

In this case, Eq. (26) can be expressed as

2
5 1 wpe
o= 2% . - - + -
1-(RP/RC) 2(w—lme)[(m—lwe)—(me—me)]
22 (28)
pi

2(w-2)) [(=20]) =} ~u]) ] :
b

i

dispersion relation (28) can be used to investigate electrostatic

+
where m; and w, are defined in Eqs. (18) and (19). The linear
stability properties for a broad range of plasma parameters f,
Y 2
wpe/mce’ etc.
As a point of reference, we note that the ion resonance instability

has previously been studied in the low-density, low-frequency regime




12
4 11,12
‘ characterized by
t 2(:)2e
—32— (1-f) <<1 ,
w
ce (29)
- + =
|ur£we|<<|we-me| .
| Within the context of the inequalities in Eq. (29), the linear
{
; dispersion relation (28) can be approximated by
~2
0= 1 epe
1-(a ) e glerlag)
] ale 5 (30)
w
[ Bt
!

= = SEE
2(m-1w1)[(urlwi)-(wi-wi)]
- LU
where use has been made of w, g and W, =W, =W, [Eqs. (17), (18)
and (29)]. Equation (30) is identical to the dispersion relation

obtained by Levy et al.11 within the framework of a fluid model

in which the electron motion is approximated by Xe=c(§x%z)/30.
Throughout the remainder of this article, Eq. (30) is referred to
as the "reference dispersion relation" (RDR). In order to assess

the influence of strong self electric fields on stability behavior

e g G et

[2(“m§e/mze) (1-f)<1], it will be useful, from time to time, to
‘:i compare the stability information obtained from the unexpanded

dispersion relation (28) with that obtained from Eq. (30). In this

S o

regard, we emphasize that the inequalities in Eq. (29) pose a particularly

severe limitation on the range of validity of Eq. (30). The present

paper is intended to alleviate this situation by a thorough investigation

of the unexpanded dispersion relation (28). 1




3.D Dimensionless Parameters

It is evident from Eqs. (17)-(19) and the linear dispersion

relation (28) that the four dimensionless parameters

&ze m, EE
ki 2 ’ f ’ ;i' ’ Rc s ( 31)
ce

can be used to characterize the plasma equilibrium. Moreover, an
important dimensionless parameter that measures the strength of

the equilibrium electric force on an electron fluid element is

[Eq. (8)]
2
wE 20 3
8 54—=—2-P—(1-f) ? (32)
wce mce

which can be constructed from the dimensionless parameters in Eq. (31).

Because
=i et < 1 (33)
w

is necessarily required for existence of the electron equilibrium
[Eq. (18)], we note from Eqs. (32) and (33) that § can span the
range 0<é<1.
For future convenient reference, in Fig. 3 are shown plots of
wplo  [Ea. (D], oifu_, [Eq. (18)] and d/w_, [Eq. (19)] versus
the dimensionless parameter 6-(steﬁuie)(1-f) for me/mi=1/1836.
In the limit of maximum charge density for existence of the equilibrium

= £ o 1/2
(6=1), we note from Fig. 3 that(uiﬁuc{—+(mi/4me)

1 =
and me/wce—O.S.
Finally, in Fig. 4, we illustrate the region of the parameter
space (f,&:e/wie) corresponding to existence of the equilibrium

[Eq. (33)]. Note that the equilibrium electron density can exceed the

Brillouin flow limit (&ielwie-O.S) provided there is sufficient

Bl e

o el 2,




b
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charge neutralization that f:l—O.S(mie/&ge).

4. STABILITY ANALYSIS %

The growth rate y=Imw and real oscillation frequency wr-Rew have
been obtained numerically from Eq. (28) for a broad range of plasma
{ parameters f, &2 /w2 and R /R . In this section, we summarize the
pe ce P ¢
essential features of these stability studies. The analysis is
? restricted to nonneutral proton-electron plasmas (mi/me=1836),
and the growth rate and real frequency are measured in units of

the lower hybrid frequency

e ke -:i0 )1/2
LH ‘"ce ci i

In order to illustratc the need for an improved dispersion
relation at large beam densities, Fig. 5 shows a plot of the

normalized growth rate y/w,, and oscillation frequency mr/mL

LH H
versus &ﬁe/wie obtained from Eq. (28) (the unexpanded dispersion
relation) and Eq. (30) (the reference dispersion relation), for 2=2,
Rp/Rc-O.S and f=0.45. Note that mr/wLH is plotted only for the
range of &ielwze corresponding to instability (y>0). Moreover, the

abscissa in Fig. 5 extends to &zelw: =0,.91, since physically allowed

e
equilibria exist for Qielwzefo.5/(1-0.45)-0.91 [Eq. (33) and Fig. 4 ].
Several points are noteworthy in Fig. 5. First, the unexpanded

dispersion relation (28) predicts instability for 0<&§e/wie<0.34,

whereas the reference dispersion relation (30) predicts instability
for the entire range of allowed equilibrium density, 0<&:e/wie<0.91.
: Second, the maximum growth rate can be a substantial fraction of Wrge

In particular, for the parameters assumed in Fig. 5, the maximum
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growth rate obtained from Eq. (28) is yHAx-0.36 w which occurs

( m ]
( for ;pe/w:e-o.Zb. Finally, it is evident from Fig. 5 that the reference
dispersion relation (30) breaks down at rather modest values of beam

density (&ze/wiexo.l), thereby underlining the need for the improved

dispersion relation in Eq. (28). Throughout the remainder of this

i . section, the stability analysis is based entirely on Eq. (28).

! Stability boundaries in the parameter space (f, ﬁielwie) are
illustrated in Figs. 6 and 7. In Fig. 6, the solid curves correspond
to the stability boundaries (y=0) obtained from Eq. (28) for %=1,

and several values of Rp/Rc. For a given value of Rp/Rc, the region
of (£, &zelmie) parameter space above the curve corresponds to
instability (y>0), whereas the region of parameter space below the
curve corresponds to stability (y=0). For low beam densities

(small values of a;e/wze), it is evident from Fig. 6 that the

system is stable for %=1, provided RP/Rc is sufficiently small.

On the other hand, for high beam densities, wall stabilization

B et

occurs provided RP/Rc is sufficiently large, i.e., provided the
conducting wall is located sufficiently close to the plasma surface.

In Fig. 7, the solid curves correspond to the stability boundaries

e e —

obtained from Eq. (28) for Rp/Rc-o'S and several values of azimuthal
mode number 2. For a given density of physical interest (&;e/w§e>0.01,
say), we note that the number of unstable modes increases rapidly

as the fractional charge neutralization f is increased to sufficiently

large values.

e e B

The dependence of stability properties on fractional charge

——————

! , neutralization is further illustrated in Figs. 8 and 9 where the

normalized growth rate y/w, . and oscillation frequency mr/wL are

LH H

e tt————————esned]




e ———

2 - 2
plotted versus f for wpe/mce 0.01 (Fig.

16

~2 2
8) and wpe/wce-o.s (Fig. 9),

and several values of mode number L. Also, RP/RC-O.S is assumed in

Figs. 8 and 9. In Figs. 8(b) and 9(b), wr/wLH is plotted only for the

ranges of f corresponding to instability (y>0). Note the rapid increase

in the number of unstable modes when f is increased to sufficiently

large values. Several important features are evident from Figs. 8 and

9. First, for the low-density case illustrated in Fig. 8 (&:elw:e-0.0I),

we note that only the fundamental mode (2=1) is unstable when £<0.13.

This is consistent with the results previously obtained by Levy et al.

for ﬁze/mie, f<<l. Second, the maximum growth rate for each mode

P

number 2 is a slowly increasing function of f. Evidently, as the

fractional charge neutralization f approaches unity, the number

of unstable modes tends to infinity within the context of the present

cold-fluid model. Moreover, in the limit of equilibrium charge

neutrality (f=1), the self electric field is equal to zero and the

plasma column is stable (y=0 in Figs. 8 and 9). Finally, for low

beam densities, we note that the real frequency w, exhibits a

nearly linear dependence on fractional

charge neutralization f

(Fig. 8). 1In contrast, when the equilibrium self-electric field

is sufficiently large (Fig. 9), w. exhibits a strongly nonlinear

dependence on f.

Shown in Figs. 10 and 11 are plots of normalized growth rate

Y/wLH and oscillation frequency wr/wLH

versus &2 /w2 for f=0.1
pe' “ce

(Fig. 10) and f=0.8 (Fig. 11), and several values of mode number %.

Also, Rp/Rc-O.S is assumed in Figs. 10

and 11. For small values of

fractional charge neutralization, it is evident that the fundamental

mode (2=1) is the most unstable mode.

For example, for the f=0.1 case

it il i
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shown in Fig. 10, the maximum growth rate (yMAx=0.093 mLH) occurs for
#=1 and &ﬁe/uﬁeso.n. This is in contrast with Fig. 11, where the

maximum growth rate for f=0.8 (yMAx=2.6 mLH) occurs for ¢=3 and
A2 ,2
m

wpe ce-2°5 (the maximum allowed density for radial confinement).

Furthermore, for the f=0.1 case shown in Fig. 10, we note that the

ion resonance instability is completely stabilized above some

critical value of beam density (&selwiez0.17). On the other hand,

for larger values of fractional charge neutralization (f=0.8 in Fig. 11),
it is evident that instability exists for the entire allowed range of

&2 /uz

pe! Yce” Moreover, several mode numbers % are unstable for a given

2
P

plasma column with significant charge neutralization (see also Figs. 7-9).

value of @ e/m:e, a feature generally characteristic of a nonneutral
Of considerable interest for experimental application is the
stability behavior for specified values of f, &ielwie and Rp/Rc.
Typical results are shown in Figs. 12 and 13 where Y/wLH and “r/“LH
are plotted versus mode number % for &ielmie-0.0I (Fig. 12) and
aie Niero.S (Fig. 13), and several values of fractional charge
neutralization f. Also, Rp/Rc-O.S is assumed in Figs. 12 and 13,
and graphical results are presented only for the unstable mode
numbers with Y>0. For the low-density case in Fig. 12, we note that
maximum growth occurs for 2=2 when f=0.2, and for 2=12 when f=0.8.
Evidently, for low beam densities, there is a broad spectrum of
unstable modes when the fractional charge neutralization is sufficiently
large. On the other hand, for higher beam densities, fewer unstable
modes are excited. For example, in Fig. 13, maximum growth occurs

for 2=1 when f=0.2, and for %=5 when f=0.8. Comparing Figs. 12 and

13, we also note that the maximum growth rate (measured in units of wLH)

is larger in the high-density case (Fig. 13) than in the low-density
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L case (Fig. 12).
1 5 We conclude this section by emphasizing that stability properties
also exhibit a sensitive dependence on the location of the conducting
wall. This is illustrated in Fig. 14 where the normalized growth
; rate Y/an and oscillation frequency mr/mLH are plotted versus Rp/Rc
for =1, Q:e/w:e-o.s, and several values of fractional charge

neutralization f. Evidently, the =1 mode is stabilized whenever

the conducting wall is located sufficiently close to the plasma surface.

Moreover, as f is increased, the conducting wall must be situated

even closer to the plasma surface to assure stability. A qualitatively

similar dependence of stability behavior on Rp/Rc is obtained for {

higher 2 values. I'
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5. SUMMARY AND CONCLUSIONS

In this paper, we have examined the influence of strong self-
electric fields on the ion resonance instability in a nonneutral
plasma column. The analysis was carried out within the framework
of a macroscopic cold-fluid model (Section 2), and electrostatic

stability properties were investigated in detail for the case of

rectangular electron and ion density profiles (Sections 3 and 4).
One of the most important conclusions of this study is that the
equilibrium self-electric field can have a large influence on
stability behavior. In particular, stability properties for 8<1
differ substantially from those obtained when <<l (see, for example,
Fig. 5). Moreover, for a nonneutral plasma column with significant
charge neutralization, it is found that the fundamental mode (2=1)
is not the most unstable mode (see, for example, Figs. 8 and 9).
However, in the special limiting case where f<<l and §<<1, the =1
mode can have the largest growth rate, which is consistent with the
result obtained previously by Levy et al.12
Finally, we emphasize that the present analysis is based on a
macroscopic cold-fluid model in which the ion (and electron) motion 3
is assumed to be laminar. Although this is a reasonable approximation
is the characteristic thermal ion Larmor radius),

Li Li
we expect significant modifications to the stability behavior when

when r <<Rp (where r

rLixRp' The influence of finite ion Larmor radius effects on the
ion resonance instability is currently under investigationlA within
the framework of a hybrid Vlasov-fluid model, which treats the

electrons as a macroscopic, cold fluid and the ions in a fully kinetic

(Vlasov) manner.

— v
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.

Rectangular density profiles for electrons and ions

[Eqs. (15) and (16)].

Plots of (a) w/w__ [Eq. (A1N]. () w./w__ [Eq. (18)]
and (c) wi/mci [Eq. (19)] versus 6=(2&§e/w§e)(l—f) for

mi/me=1836.

The shaded region of the parameter space (f,&ie/wie) corres-

ponds to physically allowed equilibria satisfying le—wie/Z&ie.

Plots of (a) growth rate y and (b) real frequency w. versus
G;elwze obtained from Eq. (28) and the reference dispersion

relation (30) for 2=2, Rp/Rc=0'5’ £=0.45 and mi/me=1836.

Stability boundaries [Eq. (28)] in the parameter space

Ay 2 il o £
(f,wpe/wce) for 2=1, mi/me—1836 and Rp/Rc—O.ZS, 0.5, 0.75.

Stability boundaries [Eq. (28)] in the parameter space

(f,&)2 /w2 ) for R_ /R =0.5, m,/m =1836 and several values of 2%.
pe ce p ¢ [

Plots of (a) growth rate y and (b) real frequency w_ versus

2 74 -
f [Eq. (28)] for wpe/wce 0.01, mi/me 1836, RP/RC—O.S and

several values of 2.

Plots of (a) growth rate y and (b) real frequency w,. versus

Al & = £ v
f [Eq. (28)] for mpe/mce-O.S, mi/me—1836, Rp/Rc 0.5 and several

values of %.
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Plots of (a) growth rate y and (b) real frequency w_ Versus

A2 2 = =
wpe W_e [Eq. (28)] for £f=0.1, mi/me 1836, Rp/Rc 0.5 and

several values of 2.

Plots of (a) growth rate y and (b) real frequency W, versus

£2 , 2 iy f 4
0/ V0o [Eq. (28)] for £=0.8, mi/me 1836, Rp/Rc 0.5 and

several values of 2.

Plots of (a) growth rate y and (b) real frequency w_ versus
2 2 o "
2 [Eq. (28)] for wpe/wce 0.01, milme—1836, Rp/Rc 0.5 and

several values of f.

Plots of (a) growth rate y and (b) real frequency W,
2w 5
versus % [Eq. (28)] for wpe/wce—O.S, mi/me 1836,

Rp/Rc=0.5 and several values of f.

Plots of (a) growth rate y and (b) real frequency W,

a2 2 = -
versus Rp/Rc [Eq. (28)] for 0pe/0ce 0.5, 2=1, mi/me 1836,

and several values of f.
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